Please check the examination details below before entering your candidate information

Aiming for 9 - Spring 2022 practice paper

Morning (Time: 1 hour 30 minutes) \quad Paper Reference 1MA1/1 H

Mathematics

Paper 1 (Non-Calculator) Higher Tier

You must have: Ruler graduated in centimetres and millimetres,
Total Marks protractor, pair of compasses, pen, HB pencil, eraser. Tracing paper may be used.

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- You must show all your working.
- Diagrams are NOT accurately drawn, unless otherwise indicated.

- Calculators may not be used.

Information

- The total mark for this paper is 80 . There are 21 questions.
- Questions have been arranged in an ascending order of mean difficulty, as found by Grade 7 students in June and November examinations.
- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Answer ALL TWENTY ONE questions.
Write your answers in the spaces provided.
You must write down all the stages in your working.

1 (a) Find the value of $\sqrt[4]{81 \times 10^{8}}$
(b) Find the value of $64^{-\frac{1}{2}}$
(c) Write $\frac{3^{n}}{9^{n-1}}$ as a power of 3

2 Ted is trying to change $0 . \dot{4} \dot{3}$ to a fraction.
Here is the start of his method.

$$
\begin{aligned}
& x=0 . \dot{4} \dot{3} \\
& 10 x=4 . \ddot{3} \dot{4} \\
& 10 x-x=4 . \ddot{3} \dot{4}-0 . \dot{4} \dot{3}
\end{aligned}
$$

Evaluate Ted's method so far.
\qquad
\qquad
\qquad

3 Solve $x^{2}=5 x+24$

4 The diagram shows a cube with edges of length $x \mathrm{~cm}$ and a sphere of radius 3 cm .

The surface area of the cube is equal to the surface area of the sphere.
Show that $x=\sqrt{k \pi}$ where k is an integer.

5 Make f the subject of the formula $\quad d=\frac{3(1-f)}{f-4}$

6 Shirley wants to find an estimate for the number of bees in her hive.
On Monday she catches 90 of the bees.
She puts a mark on each bee and returns them to her hive.
On Tuesday she catches 120 of the bees.
She finds that 20 of these bees have been marked.
(a) Work out an estimate for the total number of bees in her hive.

Shirley assumes that none of the marks had rubbed off between Monday and Tuesday.
(b) If Shirley's assumption is wrong, explain what effect this would have on your answer to part (a).
\qquad
\qquad
\qquad

7 The straight line L_{1} has equation $y=3 x-4$
The straight line L_{2} is perpendicular to L_{1} and passes through the point $(9,5)$
Find an equation of line L_{2}

8 Sally plays two games against Martin.
In each game, Sally could win, draw or lose.
In each game they play,
the probability that Sally will win against Martin is 0.3
the probability that Sally will draw against Martin is 0.1
Work out the probability that Sally will win exactly one of the two games against Martin.

9 The diagram shows two rectangles, \mathbf{A} and \mathbf{B}.

All measurements are in centimetres.
The area of rectangle \mathbf{A} is equal to the area of rectangle \mathbf{B}.
Find an expression for y in terms of w.

10 Show that $\frac{8+\sqrt{12}}{5+\sqrt{3}}$ can be written in the form $\frac{a+\sqrt{3}}{b}$, where a and b are integers.

11 There are four types of cards in a game.
Each card has a black circle or a white circle or a black triangle or a white triangle.

number of cards with a black shape	$:$number of cards with a white shape	$=3: 5$
number of cards with a circle	$: \quad$number of cards with a triangle	$=2: 7$

Express the total number of cards with a black shape as a fraction of the total number of cards with a triangle.

12 Show that $\frac{\sqrt{180}-2 \sqrt{5}}{5 \sqrt{5}-5}$ can be written in the form $a+\frac{\sqrt{5}}{b}$ where a and b are integers.
$13 x$ is proportional to \sqrt{y} where $y>0$
y is increased by 44%
Work out the percentage increase in x.
\%

14 There are only 3 red counters and 5 yellow counters in a bag.
Jude takes at random 3 counters from the bag.
Work out the probability that he takes exactly one red counter.
$D E F$ is a triangle.

P is the midpoint of $F D$.
Q is the midpoint of $D E$.
$\overrightarrow{F D}=\mathbf{a}$ and $\overrightarrow{F E}=\mathbf{b}$
Use a vector method to prove that $P Q$ is parallel to $F E$.

16 On the grid show, by shading, the region that satisfies all of these inequalities.

$$
2 y+4<x \quad x<3 \quad y<6-3 x
$$

Label the region \mathbf{R}.

(Total for Question 16 is $\mathbf{3}$ marks)

17 Here is trapezium $A B C D$.

The area of the trapezium is $66 \mathrm{~cm}^{2}$
the length of $A B$: the length of $C D=2: 3$
Find the length of $A B$.
\qquad

18 The functions fand g are such that

$$
\mathrm{f}(x)=3 x^{2}+1 \text { for } x>0 \quad \text { and } \quad \mathrm{g}(x)=\frac{4}{x^{2}} \text { for } x>0
$$

(a) Work out gf(1)

The function h is such that $\mathrm{h}=(\mathrm{fg})^{-1}$
(b) Find $\mathrm{h}(x)$

19 The diagram shows the graph of $x^{2}+y^{2}=30.25$

Use the graph to find estimates for the solutions of the simultaneous equations

$$
\begin{aligned}
& x^{2}+y^{2}=30.25 \\
& y-2 x=1
\end{aligned}
$$

\qquad

20 Find the coordinates of the turning point on the curve with equation $y=9+18 x-3 x^{2}$ You must show all your working.
(........................... ,)
(Total for Question 20 is 4 marks)

21 The diagram shows two shaded shapes, \mathbf{A} and \mathbf{B}.
Shape \mathbf{A} is formed by removing a sector of a circle with radius $(3 x-1) \mathrm{cm}$ from a sector of the circle with radius $(5 x-1) \mathrm{cm}$.
Shape \mathbf{B} is a circle of diameter $(2-2 x) \mathrm{cm}$.

The area of shape \mathbf{A} is equal to the area of shape \mathbf{B}.
Find the value of x.
You must show all your working.

BLANK PAGE

